SAN PASQUAL BAND OF MISSION INDIANS DOMESTIC WATER AUTHORITY

2024 CONSUMER CONFIDENCE REPORT PREPARED FOR: SAN PASQUAL DOMESTIC WATER AUTHORITY SUBSCRIBERS

16400 KUMEYAAY WAY Valley Center, CA, 92082 Phone: 760-651-5141 JOHNF@SANPASQUALTRIBE.ORG

REPORTING PERIOD: JAN 1, 2024 DEC 31, 2024

WWW.SANPASQUALBANDOFMISSIONINDIANS.ORG

WE ARE PLEASED TO SHARE THAT THE SAN PASQUAL WATER DEPARTMENT AND DOMESTIC WATER AUTHORITY CONTINUES TO PROVIDE HIGH QUALITY AND AFFORDABLE DRINKING WATER TO YOU EACH AND EVERY DAY.

WHILE WE ARE EXTREMELY CONFIDENT ABOUT THE QUALITY OF WATER DELIVERED TO YOUR HOMES, AS A COMMUNITY WE MUST Rethink how we use this quality water. Because of the potential for severe drought we have been monitoring the states drought status, see page 5 for current drought status and maps. We have to challenge ourselves to adapt to this new water reality: It is a limited resource and it is becoming more so. Rethinking water use outdoors is by far the area with the most potential for savings. However there are other ways to conserve so that we all can do our part to reduce water use.

WATER IS INTEGRAL TO MAINTAINING SAN PASQUAL'S WAY OF LIFE. TOGETHER, WE MUST VALUE WATER, CONSUME IT WISELY AND NEVER WASTE IT. WE ARE CONFIDENT THIS REPORT WILL SHED SOME LIGHT ON JUST HOW VALUABLE WATER IS AND HOW MUCH EFFORT IS INVOLVED TO DELIVER THIS PRECIOUS RESOURCE.

SINCERELY,

SAN PASQUAL DOMESTIC WATER AUTHORITY

SAN PASQUAL D.W.A. // WWW.SANPASQUALBANDOFMISSIONINDIANS.ORG

CONTENT

PG.		
02	01	INTRODUCTION
02	02	TRIBAL DRINKING WATER
03	03	DO YOU NEED TO TAKE ANY Special precautions?
04	04	WATER SOURCES
05	05	LINKS TO OUTSOURCED Water CCR's
06	06	WHY IS THERE ANYTHING In My Water?
06	07	OUR WATER TREATMENT Process

- PG.
- 07 | 08 WATER QUALITY TABLE
- 11 09 SPECIAL EDUCATION STATEMENTS
- 11 | 10 MICROBIOLOGICAL TESTING
- 12 | 11 SIGNIFICANT DEFICIENCIES
- 13 | 12 HEALTH BASED VIOLATIONS
- 13 13 DEFINITIONS
- 13 | 14 HOW CAN I GET INVOLVED?

01 INTRODUCTION OUR WATER SUPPLY

THE SAN PASQUAL DOMESTIC WATER AUTHORITY IS PLEASED TO PRESENT YOU WITH THE ANNUAL DRINKING WATER QUALITY Report for 2024, also known as the consumer confidence report. The U.S. Environmental protection agency and the california division of drinking water require that all water agencies produce an annual report on the previous year informing customers about the quality of their drinking water.

THIS REPORT IS A SNAP SHOT OF YOUR WATER QUALITY. INCLUDED ARE DETAILS ABOUT WHERE YOUR WATER COMES FROM, WHAT IT CONTAINS, AND HOW IT COMPARES TO STANDARDS SET BY REGULATORY AGENCIES. WE ARE COMMITTED TO PROVIDING YOU WITH INFORMATION BECAUSE INFORMED CUSTOMERS ARE OUR BEST ALLIES.

TRIBAL DRINKING WATER

THERE ARE TWO PRIMARY SOURCES FOR OUR TRIBAL DRINKING WATER, GROUND WATER AND OUT SOURCED WATER FROM THE NEIGHBOURING MUNICIPALITY. GROUND WATER SUPPLY BEGINS AS RAINWATER THAT IS NATURALLY FILTERED THROUGH THE SOIL. THIS WATER PERCOLATES THROUGH THE SOIL AND SETTLES, USUALLY SEVERAL HUNDRED FEET BELOW THE EARTH'S SURFACE, TO FORM AQUIFERS. WELL #3 ON DISTRICT A AND WELL #1 ON DISTRICT C PUMPS FROM SUCH AN AQUIFER FOR DOMESTIC USE. THE RESERVATION ALSO USES CHLORINATED AND FLUORIDATED WATER PURCHASED FROM THE INDIAN WATER AUTHORITY FOR BOTH WATER SYSTEMS A & B. IN AN EFFORT TO SUPPLY YOU WITH THE SAFEST POSSIBLE PRODUCT, THE TRIBE ALSO CHLORINATES THE WATER AT WELL #3 TO HELP CONTROL VIRUSES AND BACTERIA. THE LEVEL OF CHLORINE IS MONITORED TO ENSURE PROPER DOSAGES.

PWS ID 0605017, PWS ID 0605080, AND PWS ID 090605168

DO YOU NEED TO TAKE ANY SPECIAL PRECAUTIONS

SOME PEOPLE MAY BE MORE VULNERABLE TO CONTAMINANTS IN DRINKING WATER THAN THE GENERAL POPULATION. IMMUNOCOMPROMISED INDIVIDUALS SUCH AS A PERSON WITH CANCER UNDERGOING CHEMOTHERAPY, INDIVIDUALS WHO HAVE UNDERGONE ORGAN TRANSPLANT, PEOPLE WITH HIV/AIDS OR OTHER IMMUNE SYSTEM DISORDERS, SOME ELDERLY AND INFANTS CAN BE PARTICULARLY AT RISK FROM INFECTIONS. THESE INDIVIDUALS SHOULD SEEK ADVICE ABOUT DRINKING WATER FROM THEIR HEALTH CARE PROVIDERS. THE ENVIRONMENTAL PROTECTION AGENCY (EPA) AND CENTER FOR DISEASE CONTROL (CDC) GUIDELINES ON APPROPRIATE MEANS TO LESSEN THE RISK OF INFECTION BY CRYPTOSPORIDIUM AND OTHER MICROBIAL CONTAMINANTS ARE AVAILABLE FORM THE EPA SAFE DRINKING HOTLINE

(800-426-4791) OR AT HTTPS://WWW.EPA.GOV/GROUND-WATER-And-drinking-water/safe-drinking-water-hotline

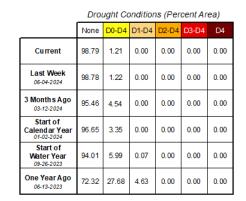
WATER SOURCES OUR IMPORTED WATER SUPPLY AND THE IMPACT ON WATER QUALITY

IN 2024, THE SAN PASQUAL RESERVATION SOURCED SOME OF ITS WATER SUPPLY THROUGH IMPORTS. THIS IMPORTED WATER WAS PURCHASED FROM THE INDIAN WATER AUTHORITY AND IS DELIVERED VIA THE VALLEY CENTER MUNICIPAL WATER DISTRICT, THE SAN DIEGO COUNTY WATER AUTHORITY, AND THE METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA. THE WATER RECEIVED IS A BLEND FROM TWO DIFFERENT SOURCES: COLORADO RIVER WATER AND CALIFORNIA STATE WATER PROJECT WATER. THE COMPOSITION OF THIS BLEND CAN VARY FROM YEAR TO YEAR.

SEVERAL FACTORS NEGATIVELY AFFECT THE QUALITY OF WATER FROM BOTH THE COLORADO RIVER AND THE CALIFORNIA STATE WATER PROJECT. THE COLORADO RIVER FLOWS THROUGH THOUSANDS OF MILES OF UNPROTECTED WATERSHEDS THAT CONTAIN TOWNS, FARMS, OLD MINING SITES, AND INDUSTRIAL AREAS. SIMILARLY, WATER FROM THE CALIFORNIA STATE WATER PROJECT IS VULNERABLE TO POTENTIAL CONTAMINANTS, INCLUDING PESTICIDES AND HERBICIDES. ADDITIONALLY, THIS WATER SOURCE HAS HIGHER LEVELS OF ORGANIC CARBON AND BROMIDE COMPARED TO COLORADO RIVER WATER. AS THE LEVELS OF ORGANIC CARBON AND BROMIDE INCREASE, THERE IS A GREATER RISK OF FORMING DISINFECTION BY-PRODUCTS.

THE SAN DIEGO COUNTY WATER AUTHORITY AND THE VALLEY CENTER MUNICIPAL WATER DISTRICT ARE RESPONSIBLE FOR TREATING BOTH THE COLORADO RIVER AND CALIFORNIA STATE WATER PROJECT WATER. THE SAN PASQUAL WATER DEPARTMENT REGULARLY MONITORS THE QUALITY OF ALL WATER TO ENSURE THAT DRINKING WATER QUALITY STANDARDS ARE CONSISTENTLY MET. VALLEY CENTER MUNICIPAL WATER DISTRICT http://www.vcmwd.org/services/water-and-customer-service/water-quality-reports

SAN DIEGO COUNTY WATER AUTHORITY https://www.sdcwa.org/water-quality


METROPOLITAN WATER DISTRICT OF SOUTHERN CALIFORNIA http://www.mwdh20.com

> U.S. Drought Monitor California

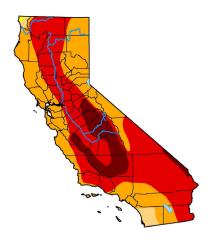
June 11, 2024

(Released Thursday, Jun. 13, 2024) Valid 8 a.m. EDT

Intensity:

None D0 Abnormally Dry D1 Moderate Drought

D2 Severe Drought D3 Extreme Drought D4 Exceptional Drought


The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.aspx

<u>Author:</u> Richard Tinker CPC/NOAA/NWS/NCEP

droughtmonitor.unl.edu

U.S. Drought Monitor California

(Relea	June 7, 2022 (Released Thursday, Jun. 9, 2022) Valid 8 a.m. EDT												
Drought Conditions (Percent Area)													
None D0-D4 D1-D4 D2-D4 D3-D4 D4													
Current	0.00	100.00	99.79	97.48	59.81	11.59							
Last Week 05-31-2022	0.00	100.00	99.86	97.56	59.81	11.59							
3 Months Ago 03-08-2022	0.00	100.00	100.00	86.98	12.82	0.00							
Start of Calendar Year 01-04-2022	0.00	100.00	99.30	67.62	16.60	0.84							
Start of Water Year 09-28-2021	0.00	100.00	100.00	93.93	87.88	45.66							
One Year Ago 05-08-2021	0.00	100.00	100.00	94.75	85.20	33.32							
Intensity: None D0 Abnor D1 Mode				03 Extr	ere Droi eme Dri eptional								
The Drought Mor Local conditions Drought Monitor,	may var	y. For m	ore info	rmation	on the								
Author: Brad Pugh CPC/NOAA													
usda 🐽 💓													
dro	ugh	tmor	nitor.	unl.	edu								

U.S. Drought Monitor California

June 13, 2023 (Released Thursday, Jun. 15, 2023) Valid 8 a.m. EDT Drought Conditions (Percent Area)												
	None	D0-D4	D1-D4	D2-D4	D3-D4							
Current	72.32	27.68	4.63	0.00	0.00	0.00						
Last Week 06-06-2023	70.88	29.12	4.63	0.00	0.00	0.00						
Month s Ago 03-14-2023	44.66	55.34	36.42	8.49	0.00	0.00						
Start of alend ar Year 01-03-2023	0.00	100.00	97.93	71.14	27.10	0.00						
Start of Water Year 09-27-2022	0.00	100.00	99.76	94.01	40.91	16.57						

0.00 100.00 99.79 97.48 59.81 11.59

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. For more information on the Drought Monitor, go to https://droughtmonitor.unl.edu/About.as

Author: Adam Hartman NOAA/NWS/NCEP/CPC

Dne Year Ago

06 WHY IS THERE ANYTHING IN MY WATER?

DRINKING WATER, INCLUDING BOTTLED WATER, MAY REASONABLY BE EXPECTED TO CONTAIN AT LEAST SMALL AMOUNTS OF CONTAMINANTS. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminates and potential health effects can be obtained by calling the environmental protection agency's safe drinking hotline (800-46-4791).

THE SOURCES OF DRINKING WATER (BOTH TAP WATER AND BOTTLED WATER) INCLUDE RIVERS, LAKES, STREAMS, PONDS, RESERVOIRS, SPRINGS AND WELLS. AS WATER TRAVELS OVER THE SURFACE OF THE LAND OR THROUGH THE GROUND, IT DISSOLVES NATURALLY OCCURRING MINERALS AND, IN SOME CASES, RADIOACTIVE MATERIAL, AND CAN PICK UP SUBSTANCES RESULTING FROM THE PRESENCE OF ANIMALS OR FROM HUMAN ACTIVITY. CONTAMINANTS THAT MAY BE PRESENT IN SOURCE WATER INCLUDE:

• MICROBIAL CONTAMINANTS, SUCH AS VIRUSES AND BACTERIA THAT MAY COME FROM SEWAGE TREATMENT PLANTS, SEPTIC SYSTEMS, AGRICULTURAL LIVESTOCK OPERATIONS, AND WILDLIFE.

• INORGANIC CONTAMINANTS, SUCH AS SALTS AND METALS, THAT CAN BE NATURALLY OCCURRING OR RESULT FROM URBAN STORM WATER RUNOFF, INDUSTRIAL OR DOMESTIC WASTEWATER DISCHARGES, OIL AND GAS PRODUCTION, MINING, OR FARMING.

• PESTICIDES AND HERBICIDES, THAT MAY COME FROM A VARIETY OF SOURCES SUCH AS AGRICULTURE, URBAN STORM WATER RUNOFF, AND RESIDENTIAL USES.

• ORGANIC CHEMICAL CONTAMINANTS, INCLUDING SYNTHETIC AND VOLATILE ORGANIC CHEMICALS THAT ARE BY-PRODUCTS OF INDUSTRIAL PROCESSES AND PETROLEUM PRODUCTION, AND CAN ALSO COME FROM GAS STATIONS, URBAN STORM WATER RUNOFF, AGRICULTURAL APPLICATION, AND SEPTIC SYSTEMS.

• RADIOACTIVE CONTAMINANTS, THAT CAN BE NATURALLY OCCURRING OR BE THE RESULT OF OIL AND GAS PRODUCTION AND MINING ACTIVITIES.

IN ORDER TO ENSURE THAT TAP WATER IS SAFE TO DRINK, THE U.S. ENVIRONMENTAL PROTECTION AGENCY PRESCRIBE REGULATIONS THAT LIMIT The amount of certain contaminants in water provided by public water systems. Food and drug administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

OUR WATER TREATMENT PROCESS

THE SAN PASQUAL WATER DEPARTMENT PROVIDES HIGH-QUALITY DRINKING WATER BY UTILIZING PROVEN TECHNOLOGY, UPDATED FACILITIES, AND STATE-CERTIFIED OPERATORS. WATER IS TREATED AT THE TRIBES WATER TREATMENT PLANT USING SEVERAL PROCESSES, WITH EACH PROCESS PROVIDING ADDITIONAL WATER QUALITY IMPROVEMENTS. USING SEVERAL TREATMENT PROCESSES PROVIDES MULTIPLE BARRIERS FOR ADDED SAFETY. OUR TREATMENT PLANT EMPLOYS A COMBINATION OF TIME-TESTED CONVENTIONAL WATER TREATMENT PROCESSES. CONVENTIONAL WATER TREATMENT CONSISTS OF POTASSIUM PERMANGANATE TREATMENT FOR IRON AND MANGANESE, SEDIMENTATION FOR SAND REMOVAL, AND SAND/MULTI-MEDIA FILTRATION; THIS COST-EFFECTIVE, PROVEN METHOD OF TREATMENT IS USED THROUGHOUT THE MODERN WORLD.

OB WATER QUALITY TABLES

THE FOLLOWING SERIES OF TABLES LISTS ALL OF THE DRINKING WATER CONTAMINANTS DETECTED DURING THE CALENDAR YEAR OF THIS REPORT. THE PRESENCE OF CONTAMINANTS IN THE WATER DOES NOT NECESSARILY INDICATE THAT THE WATER POSES A HEALTH RISK. UNLESS OTHERWISE NOTED, THE DATA PRESENTED IN THIS TABLE IS FROM TESTING DONE IN THE CALENDAR YEAR OF THE REPORT.

THE EPA OR THE STATE REQUIRES MONITORING FOR CERTAIN CONTAMINANTS LESS THAN ONCE PER YEAR BECAUSE THE CONCENTRATIONS OF THESE CONTAMINANTS DO NOT CHANGE FREQUENTLY.

PUBLIC WATER SYSTEM #090605017, 1 GROUND WATER SOURCE AND 1 SURFACE WATER SOURCE

DISTRICT A (CANAL ROAD, OOS ROAD, PARADISE MTN ROAD, IPAII, ASHAA, EAGLE WAY)

CONTAMINANTS	MRDLG	MRDL	YOUR WATER	RANGE LOW	RANGE HIGH	SAMPLE DATE	MRDL EXCEEDED	TYPICAL SOURCE
				DISINFECTA	NTS			
CHLORINE Units: PPM	4	4	0.2208	0.1	0.7	2024	NO	DRINKING WATER ADDITIVE USED For disinfection
CONTAMINANTS	MCLG	MCL	YOUR WATER	RANGE LOW	RANGE High	SAMPLE Date	VIOLATION	TYPICAL SOURCE
				DISINFECTION BY-F	PRODUCTS			
FIVE HALOACETIC Acids (haa5) Units: PPB	N/A	60	7.8	ND	7.8	2022	NO	BY-PRODUCT OF DRINKING WATER Chlorination
TOTAL TRIHALOMETHANES (TTHMS) Units: PPB	N/A	80	16.3	14.72	16.29	2022	NO	BY-PRODUCT OF DRINKING WATER Chlorination
				INORGANIC CONTA	MINANTS			
ARSENIC Units: PPB	0	10	4.3	N/A	N/A	2024	NO	EROSION OF NATURAL DEPOSITS; Runoff from orchards; glass and electronics production Waste
SODIUM Units: PPM	N/A	N/A	93	N/A	N/A	2022	NO	EROSIONS OF NATURAL DEPOSITS; Water additive which promotes Strong teeth; discharge from Fertilizer and aluminum Factories
				LEAD AND COPPE	ER RULE			
COPPER Units: PPM - 90th Percentile	1.3	1.3	0.1005	ND O SITES OVER	0.13 Action Level	2022	NO	CORROSION OF HOUSEHOLD Plumbing systems; erosion of Natural deposits; leaching From wood preservatives

PUBLIC WATER SYSTEM #090605017 CONT...

DISTRICT A (CANAL ROAD, OOS ROAD, PARADISE MTN ROAD, IPAII, ASHAA, EAGLE WAY)

CONTAMINANTS	MCLG	ACTION LEVEL	YOUR Water	RANGE Low	RANGE HIGH	SAMPLE DATE	VIOLATION	TYPICAL SOURCE					
	RADIOLOGICAL CONTAMINANTS												
ADJUSTED ALPHA (Excl. Radom & U) Units: PCI/L	0	15	8.0028	1.08	15.8	2024	NO	EROSION OF NATURAL DEPOSITS					
COMBINED RADIUM 226/228 Units: PCI/L	0	5	2.7423	ND	4.647	2024	NO	EROSION OF NATURAL DEPOSITS					
URANIUM (Combined) Units: PPB	0	30	24.5	0.026	25	2024	NO	EROSION OF NATURAL DEPOSITS					
			UNREGULATED F	PER- AND POLYFLUO	ROALKYL SUBSTANCE	ES (PFAS)							
PERFLUOROBUTANESULFONIC ACID (PHBS) UNITS: PPT	N/A	N/A	12	11	12	2024	NO	MANUFACTURING OF GREASE, WATER. Oil-Resistant products, Firefighting foams, Electroplating, leaching from Unpermitted landfills					
PERFLUOROHEXANESULFONIC ACID (PFHXS) UNTS: PPT	N/A	10	3	2	3	2024	NO	MANUFACTURING OF GREASE, WATER. Oil-Resistant products, Firefighting foams, Electroplating, leaching from Unpermitted landfills					
PERFLUOROOCTANOIC ACID (PF0A) Units: PPt	N/A	4	3	N/A	N/A	2024	NO	MANUFACTURING OF GREASE, WATER. Oil-Resistant products, Firefighting foams, Electroplating, leaching from Unpermitted landfills					

PUBLIC WATER SYSTEM #090605080, 1 SURFACE WATER SOURCE

DISTRICT B (KUMEYAAY WAY, NYEMII PASS, KUNYAAW PATH, MORNING STAR, KUNYAAW COURT, SOUTH SAN PASQUAL)

CONTAMINANTS	MRDLG	MRDL	YOUR WATER	RANGE LOW	RANGE HIGH	SAMPLE DATE	MRDL EXCEEDED	TYPICAL SOURCE
				DISINFECTA	NTS			
CHLORINE Units: PPM	4	4	0.1667	0	0.2	2024	NO	DRINKING WATER ADDITIVE USED For disinfection
CONTAMINANTS	MCLG	MCL	YOUR WATER	RANGE LOW	RANGE High	SAMPLE Date	VIOLATION	TYPICAL SOURCE
				DISINFECTION BY-F	PRODUCTS			
FIVE HALOACETIC Acids (HAA5) Units: PPB	N/A	60	20.4	12.6	20.4	2024	NO	BY-PRODUCT OF DRINKING WATER Chlorination
TOTAL TRIHALOMETHANES (TTHMS) Units: PPB	N/A	80	26.7	23.05	26.67	2024	NO	BY-PRODUCT OF DRINKING WATER Chlorination
CONTAMINANTS	MCLG	ACTION LEVEL	YOUR Water	RANGE	SAMPLE DATE	A.L. EXCEEDED	TYPICAL SOURCE	CONTAMINANTS
				LEAD AND COPPE	ER RULE			
COPPER UNITS: PPM - 90TH PERCENTILE	1.3	1.3	0.065	ND	0.08	2022	NO	CORROSION OF HOUSEHOLD Plumbing systems; erosion of Natural deposits; leaching
				O SITES OVER ACTION LEVEL				FROM WOOD PRESERVATIVES

PUBLIC WATER SYSTEM #090605168 DISTRICT C (DURO ROAD), 1 GROUND WATER SOURCE

CONTAMINANTS	MRDLG	MRDL	YOUR WATER	RANGE LOW	RANGE HIGH	SAMPLE DATE	MRDL EXCEEDED	TYPICAL SOURCE
		•		DISINFECTAN	TS			
CHLORINE Units: PPM	4	4	0.2333	0.1	0.7	2024	NO	DRINKING WATER ADDITIVE USED For disinfection
CONTAMINANTS	MCLG	MCL	YOUR Water	RANGE LOW	RANGE High	SAMPLE Date	VIOLATION	TYPICAL SOURCE
				INORGANIC CONTAI	MINANTS			
BARIUM Units: PPM	2	2	0.011	N/A	N/A	2022	NO	DISCHARGE OF OIL DRILLING Wastes and from metal Refineries; erosion of natural Deposits
FLUORIDE Units: PPM	4	4	0.26	N/A	N/A	2023	NO	EROSION OF NATURAL DEPOSITS; Water additive which promotes Strong teeth; discharge from Fertilizer and aluminum Factories
SODIUM Units: PPM	N/A	N/A	42	N/A	N/A	2024	NO	EROSION OF NATURAL DEPOSITS; Saltwater intrusion
CONTAMINANTS	MCLG	ACTION LEVEL	YOUR Water	RANGE Low	RANGE HIGH	SAMPLE DATE	VIOLATION	CONTAMINANTS
			F	ADIOLOGICAL CONT	AMINANTS			
ADJUSTED ALPHA (EXCL. RADOM & U) UNITS: PCI/L	0	15	4	2.505	4	2020	NO	EROSION OF NATURAL DEPOSITS
URANIUM (Combined) Units: PPB	0	30	6	ND	5.96	2020	NO	EROSION OF NATURAL DEPOSITS

O9 SPECIAL EDUCATION STATEMENTS

EDUCATIONAL STATEMENT FOR LEAD:

LEAD CAN CAUSE SERIOUS HEALTH PROBLEMS, ESPECIALLY FOR PREGNANT WOMEN AND YOUNG CHILDREN. LEAD IN DRINKING WATER IS PRIMARILY FROM MATERIALS AND COMPONENTS ASSOCIATED WITH SERVICE LINES AND HOME PLUMBING. DURO WATER SYSTEM IS RESPONSIBLE FOR PROVIDING HIGH QUALITY DRINKING WATER AND REMOVING LEAD PIPES, BUT CANNOT CONTROL THE VARIETY OF MATERIALS USED IN PLUMBING COMPONENTS IN YOUR HOME. YOU SHARE THE RESPONSIBILITY FOR PROTECTING YOURSELF AND YOUR FAMILY FROM THE LEAD IN YOUR HOME PLUMBING. YOU CAN TAKE RESPONSIBILITY BY IDENTIFYING AND REMOVING LEAD MATERIALS WITHIN YOUR HOME PLUMBING AND TAKING STEPS TO REDUCE YOUR FAMILY'S RISK. BEFORE DRINKING TAP WATER, FLUSH YOUR PIPES FOR SEVERAL MINUTES BY RUNNING YOUR TAP, TAKING A SHOWER, DOING LAUNDRY OR A LOAD OF DISHES. YOU CAN ALSO USE A FILTER CERTIFIED BY AN AMERICAN NATIONAL STANDARDS INSTITUTE ACCREDITED CERTIFIER TO REDUCE LEAD IN DRINKING WATER. IF YOU ARE CONCERNED ABOUT LEAD IN YOUR WATER AND WISH TO HAVE YOUR WATER TESTED, CONTACT YOUR WATER UTILITY. INFORMATION ON LEAD IN DRINKING WATER, TESTING METHODS, AND STEPS YOU CAN TAKE TO MINIMIZE EXPOSURE IS AVAILABLE AT HTTP://WWW.EPA.GOV/SAFEWATER/LEAD.

PER- AND POLYFLUOROALKYL SUBSTANCES (PFAS) MONITORING:

IN APRIL 2024, EPA ANNOUNCED A FINAL NATIONAL PRIMARY DRINKING WATER REGULATION (NPDWR) FOR SIX PFAS COMPOUNDS. UNDER THE RULE, WE ARE REQUIRED TO CONDUCT INITIAL MONITORING BY 2027 AND COMPLY WITH MAXIMUM CONTAMINANT LEVELS (MCLS) BY 2029. LAST YEAR, OUR WATER SYSTEM PARTICIPATED IN A VOLUNTARY SAMPLING PROJECT THAT EVALUATED FOR THE PRESENCE OF TWENTY-FIVE PFAS COMPOUNDS, INCLUDING THE SIX COMPOUNDS INVOLVED IN THE NEW RULE. NO PFAS COMPOUNDS WERE DETECTED IN YOUR DRINKING WATER. PFAS ARE A GROUP OF THOUSANDS OF SYNTHETIC CHEMICALS THAT HAVE BEEN IN USE SINCE THE 1940S. PFAS HAVE BEEN FOUND IN A WIDE ARRAY OF CONSUMER AND INDUSTRIAL PRODUCTS AND AS AN INGREDIENT IN FIREFIGHTING FOAM. CURRENT SCIENTIFIC RESEARCH HAS SHOWN LINKS BETWEEN EXPOSURE TO SOME PFAS CHEMICALS AND ADVERSE HEALTH OUTCOMES. DRINKING WATER MAY BE IMPACTED IN COMMUNITIES

WHERE THESE CHEMICALS HAVE CONTAMINATED THE WATER SUPPLY. YOU CAN FIND MORE INFORMATION ABOUT EPA'S ACTIONS TO ADDRESS PFAS IN DRINKING WATER AND LINKS TO INFORMATIONAL RESOURCES HERE: WWW.EPA.GOV/PFAS

SERVICE LINE INVENTORY FOR SYSTEMS WITH ALL NON-LEAD:

DISTRICT A, DISTRICT B AND THE DURO WATER SYSTEM WERE REQUIRED TO COMPLETE AN INVENTORY OF SERVICE LINE MATERIALS TO DETERMINE WHETHER Any service lines connected to the distribution system are made of lead material. We determined that all service lines at duro water system are made of non-lead materials. The service line inventory is available upon request, please contact us for more information.

ADDITIONAL INFORMATION ON LEAD:

EXPOSURE TO LEAD IN DRINKING WATER CAN CAUSE SERIOUS HEALTH EFFECTS IN ALL AGE GROUPS. INFANTS AND CHILDREN CAN HAVE DECREASES IN IQ AND Attention span. Lead exposure can lead to new learning and behavior problems or exacerbate existing learning and behavior problems. The children of women who are exposed to lead before or during pregnancy can have increased risk of these adverse health effects. Adults can have increased risks of heart disease, high blood pressure, kidney or nervous system problems.

MICROBIOLOGICAL TESTING

WE ARE REQUIRED TO TEST YOUR WATER REGULARLY FOR SIGNS OF MICROBIAL CONTAMINATION. POSITIVE TEST RESULTS COULD LEAD TO FOLLOW-UP INVESTIGATIONS CALLED ASSESSMENTS AND POTENTIALLY THE ISSUACE OF PUBLIC HEALTH ADVISORIES. ASSESSMENTS COULD LEAD TO RQUIRED CORRECTIVE ACTIONS. THE INFORMATION BELOW SUMMARIZES THE RESULTS OF TESTS.

PUBLIC WATER System	CALENDAR YEAR	SAMPLING REQUIREMENTS	SAMPLING CONDUCTED	TOTAL E. COLI POSITIVE	ASSESSMENT TRIGGERS	ASSESSMENT CONDUCTED
090605017 District a	2024	2 SAMPLE DUE MONTHLY	12 OUT OF 12	0	0	0
090605080 District B	2024	1 SAMPLE DUE MONTHLY	12 OUT OF 12	0	0	0
090605168 District C	2024	1 SAMPLE DUE MONTHLY	12 OUT OF 12	0	0	0

THE FOLLOWING IS A LISTING OF SIGNIFICANT DEFICIENCIES THAT HAVE YET TO BE CORRECTED. YOUR PUBLIC WATER SYSTEM IS STILL WORKING TO CORRECT THESE DEFICIENCIES AND INTERIM MILESTONES ARE SHOWN, AS APPLICABLE.

DEFICIENCY TITLE: WELL CASING

DATE IDENTIFIED: 8/4/2022 OVERALL DUE DATE: 12/31/2025

SIGNIFICANT DEFICIENCIES

DEFICIENCY DESCRIPTION: THE WELL CASING IS ONLY 1 INCH ABOVE THE GROUND SURFACE MAKING IT SUSCEPTIBLE TO Contamination from stormwater runoff. Corrective action plan: the Indian Health Service (IHS) has funded a project to construct a New Well House and treatment plant.

DEFICIENCY TITLE: WELL VENT

DATE IDENTIFIED: 8/4/2022 OVERALL DUE DATE: 12/31/2025

DEFICIENCY DESCRIPTION: THE WELL IS NOT EQUIPPED WITH A VENT.

CORRECTIVE ACTION PLAN: THE INDIAN HEALTH SERVICE (IHS) HAS FUNDED A PROJECT TO CONSTRUCT A NEW WELL HOUSE AND TREATMENT PLANT.

DEFICIENCY TITLE: WELL HOUSE NOT PROTECTED FROM POTENTIAL CONTAMINATION AND VANDALISM

DATE IDENTIFIED: 8/4/2022 OVERALL DUE DATE: 12/31/2025

DEFICIENCY DESCRIPTION: THE WELL HOUSE IS DOWNSLOPE FROM A NEARBY HILL AND COULD BE INUNDATED WITH STORMWATER RUNOFF.

CORRECTIVE ACTION PLAN: THE INDIAN HEALTH SERVICE (IHS) HAS FUNDED A PROJECT TO CONSTRUCT A NEW WELL HOUSE AND TREATMENT PLANT

HEALTH BASED VIOLATIONS

THERE WERE NO HEALTH BASED VIOLATIONS TO REPORT ON.

DEFINITIONS

UNIT DEFINITIONS:

PPM= PARTS PER MILLION, OR MILLIGRAMS PER LITER (MG/L) PPB = PARTS PER BILLION N/A =NOT APPLICABLE ND = NOT DETECTABLE AT TESTING LIMIT NR = MONITORING NOT REQUIRED, BUT RECOMMENDED MCGL = MAXIMUM CONTAMINANT LEVEL GOAL: THE HIGHEST LEVEL OF CONTAMINANT IN DRINKING WATER BELOW WHICH THERE IS NO KNOWN OR EXPECTED RISK TO HEALTH. MCLG'S ALLOW FOR A MARGIN OF SAFETY. MCL = MAXIMUM CONTAMINANT LEVEL. HIGHEST LEVEL ALLOWED IN DRINKING WATER BY EPA. MCL'S ARE SET AS CLOSE TO THE MCLG'S AS FEASIBLE USING THE BEST AVAILABLE TREATMENT TECHNOLOGY TT = TOTAL TECHNIQUE: A REQUIRED PROCESS INTENDED TO REDUCE THE LEVEL OF A CONTAMINANT IN DRINKING WATER. AL = ACTION LEVEL: THE CONCENTRATION OF A CONTAMINANT WHICH, IF EXCEEDED, TRIGGER TREATMENT OR OTHER REQUIREMENTS WHICH A WATER SYSTEM MUST FOLLOW. TEST RESULT UPDATES: PUBLIC WATER SYSTEMS A AND B ARE MONITORED MONTHLY FOR BACTERIOLOGICAL CONTAMINANTS. NONE OF THE SAMPLES TESTED POSITIVE FOR TOTAL COLIFORM OR FECAL COLIFORM. THE TABLES PROVIDED LIST ALL THE DRINKING WATER

TESTED POSITIVE FOR TOTAL COLIFORM OR FECAL COLIFORM. THE TABLES PROVIDED LIST ALL THE DRINKING WATER Contaminants that were detected in the domestic water supply in 2017. No chemical contaminants exceeded EPA HEALTH-BASED CRITERIA (MCLS).

HOW DO I GET INVOLVED?

PLEASE FEEL FREE TO CONTACT THE NUMBER PROVIDED BELOW FOR MORE INFORMATION OR FOR A TRANSLATED COPY OF THE REPORT IF YOU NEED IT IN ANOTHER LANGUAGE. FOR MORE INFORMATION PLEASE CONTACT: John Flores, Domestic Water Manager Johnf@Sanpasqualtribe.org (760) 651-5141

SAN PASQUAL BAND OF MISSION INDIANS

2024 SPDWA CCR

IPAI

16400 KUMEYAAY WAY Po Box 365 Valley Center, CA, 92082 WWW.Sanpasqualbandofmissionindians.org

PARAMETER (a)	Units	MCL [MRDL]	PHG (MCLG) [MRDLG]			Treat Pla	Oaks ment ant Results	Carls Desali Pla Test R	nation ant	Major Sources in Drinking Water
PRIMARY STAND	ARDS	- MANE	DATORY	HEALT	H REL	ATED S	TANDA	RDS		
				Range	Average	Range	Average	Range	Average	
CLARITY Combined Filter	NTU	⊤⊤ = 1		Highest	0.07	0.02-0.087	0.03	Highest	0.08	
Effluent Turbidity	%	TT(b)	NA	%<0.3	100%	% <0.1	100%	% <0.1	100%	Soil runoff
INORGANIC CHEMICA	ALS									
Arsenic	ppb	10	0.004	ND	ND	2.1	2.1	ND	ND	Natural deposits erosion, glass and electronics production wastes.
Nitrate (as N) (i)	ppm	10	10	ND	ND	ND	ND	ND	ND	Runoff and leaching from fertilizer use; sewage; natural deposit erosion
-luoride Treatment-	ppm	2.0	1	0.6-0.8	0.7	0.6-0.7	0.64	0.606-	0.692	Water additive for dental health
related (I)	ppm	2.0		0.0 0.0	0.1	0.0 0.7	0.01	0.790	0.002	
Jranium	pCi/L	20	0.43	ND-3	2	1.7-2.8	2.3	ND	ND	Erosion of natural deposits
DISINFECTION BY-PR										
CMWD Total						WD Distri				By-product of drinking water
Trihalomethanes (e)	ppb	80	NA		Range 10.0-48.0	1	Hi	ghest LR/ 31	AA	chlorination
			· · · · · · · · · · ·			, WD Distri		/stem		By an duct of drinking water
VCMWD Haloacetic Acid (d)	ppb	60	NA		Range 0.0-19.0		Hi	ghest LR/ 10	AA	By-product of drinking water chlorination
VCMWD Total						WD Distri	bution Sv			
Chlorine Residual	ppm	[4.0]	[4.0]		Range			Average		Drinking water disinfectant added for treatment
(Chloramines)					1.3-2.1			1.78		
	NITOR			TED	1/014		bution O	etom		
<mark>√CMWD</mark> Total Coliform Bacteria (c)	%	5.0	0		Range	WD Distri	DULION S	/stem Average		Naturally present in the
(m)					ND			ND		environment
VCMWD Fecal Coliform Bacteria and	CFU	0	0		VCM Range	WD Distri	bution Sy			Human and animal fecal waste
E. Coli (c) (m)	/mL	0	0		ND			Average ND		Human and annual legal waste
NORGANIC CHEMIC	ALS									
	0.000	AL = 1.2	0.3		VCM	WD Distri	bution Sy	/stem		Internal corrosion of household
Copper (f) Triennial 2022	ppm	AL = 1.3	0.5	90	h Percen	tile		0.255		plumbing; natural deposit erosion
	ppb	AL = 15				WD Distri	bution Sy			Internal corrosion of household
Lead (f) Triennial 2022	T. L. C.			90	h Percen	tilo		10		plumbing; natural deposit erosion
					1 ereen	lille		4.0		
SECONDARY STA	NDA	RDS – Al	ESTHETI					4.0		
SECONDARY STA				C STAN	IDARD	S	NIA		80	Runoff/leaching from natural
Chloride	ppm	RDS – Al 500	ESTHETI NA		96		NA	48-110	80	Runoff/leaching from natural deposits; seawater influence
Chloride Specific				C STAN	IDARD	S	NA 827	48-110 242.3	80 430.8	Runoff/leaching from natural
Chloride Specific Conductance	ppm µs/ cm	500 1600	NA NA	C STAN 92-100 903-917	96 910	S NA 827	827	48-110 242.3 551.4	430.8	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural
Chloride Specific Conductance Sulfate	ppm µs/	500	NA	C STAN 92-100	96	S NA		48-110 242.3		Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste
Chloride Specific Conductance Sulfate Total Dissolved	ppm µs/ cm	500 1600	NA NA	C STAN 92-100 903-917	96 910	S NA 827	827	48-110 242.3 551.4	430.8	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS)	ppm µs/ cm ppm ppm	500 1600 500	NA NA NA	C STAN 92-100 903-917 195-203	96 910 199	S NA 827 152-217	827 191	48-110 242.3 551.4 12.0-17.0	430.8 14.8	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET	ppm µs/ cm ppm ppm ERS	500 1600 500	NA NA NA	C STAN 92-100 903-917 195-203	96 910 199	S NA 827 152-217	827 191	48-110 242.3 551.4 12.0-17.0	430.8 14.8	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃)	ppm µs/ cm ppm ppm ERS ppm ppb	500 1600 500 1000 NA NL=	NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107	96 910 199 566	S NA 827 152-217 474-614 99-120	827 191 545 112	48-110 242.3 551.4 12.0-17.0 149-311 47-88	430.8 14.8 240 66	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron	ppm µ\$/ cm ppm ppm ERS ppm ppb [ppm]	500 1600 500 1000 NA NL= 1000	NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130	96 910 199 566 105 130	S NA 827 152-217 474-614 99-120 NA	827 191 545 112 NA	48-110 242.3 551.4 12.0-17.0 149-311	430.8 14.8 240 66 0.65	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium	ppm µs/ cm ppm ppm ERS ppm ppb	500 1600 500 1000 NA NL=	NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107	96 910 199 566	S NA 827 152-217 474-614 99-120	827 191 545 112	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92	430.8 14.8 240 66	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index)	ppm µ\$/ cm ppm ppm ERS ppm ppb [ppm]	500 1600 500 1000 NA NL= 1000	NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130	96 910 199 566 105 130	S NA 827 152-217 474-614 99-120 NA	827 191 545 112 NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76-	430.8 14.8 240 66 0.65	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g)	ppm µs/ cm ppm ppm ERS ppm ppb [ppm] ppm	500 1600 500 1000 NA NL= 1000 NA	NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62	96 910 199 566 105 130 62	S NA 827 152-217 474-614 999-120 NA NA	827 191 545 112 NA NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00	430.8 14.8 240 66 0.65 23.3	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste
Chloride Specific	ppm µs/ cm ppm ppm FERS ppm ppb [ppm] ppm Al	500 1600 500 1000 NA NL= 1000 NA NA	NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4	96 910 199 566 105 130 62 12.4	S NA 827 152-217 474-614 99-120 NA NA NA	827 191 545 112 NA NA NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA	430.8 14.8 240 66 0.65 23.3 NA	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃)	ppm µs/ cm ppm ppm FERS ppm ppb [ppm] ppm Al Sl	500 1600 500 1000 NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243	JDARD 96 910 199 566 105 130 62 12.4 0.52 242	S NA 827 152-217 474-614 999-120 NA NA NA NA NA	827 191 545 112 NA NA NA NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA NA 60.4-75.2	430.8 14.8 240 66 0.65 23.3 NA NA 68.1	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) <i>(as Aggressive Index)</i> Corrosivity (g) <i>(as Saturation Index)</i> Hardness (CaCO ₃) Magnesium	ppm µs/ cm ppm ppm ERS ppm ppb [ppm] ppm Al Sl Sl ppm	500 1600 500 1000 NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22	S NA 827 152-217 474-614 99-120 NA NA NA NA NA	827 191 545 112 NA NA NA NA NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA NA 60.4-75.2 1.2-1.5	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) <i>(as Aggressive Index)</i> Corrosivity (g) <i>(as Saturation Index)</i> Hardness (CaCO ₃) Magnesium	ppm µs/ cm ppm ppm FERS ppm ppb [ppm] ppm Al Sl Sl ppm units	500 1600 500 1000 NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243	JDARD 96 910 199 566 105 130 62 12.4 0.52 242	S NA 827 152-217 474-614 999-120 NA NA NA NA NA	827 191 545 112 NA NA NA NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76	430.8 14.8 240 66 0.65 23.3 NA NA 68.1	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) 'as Aggressive Index) Corrosivity (g) 'as Saturation Index) Hardness (CaCO ₃) Magnesium Ph	ppm µs/ cm ppm ppm ERS ppm ppb [ppm] ppm Al Sl Sl ppm	500 1600 500 1000 NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22	S NA 827 152-217 474-614 99-120 NA NA NA NA NA	827 191 545 112 NA NA NA NA NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA NA 60.4-75.2 1.2-1.5	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits
Chloride Specific Conductance Sulfate Fotal Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) <i>(as Aggressive Index)</i> Corrosivity (g) <i>(as Saturation Index)</i> Hardness (CaCO ₃) Magnesium Ph Potassium	ppm µs/ cm ppm ppm FERS ppm ppb [ppm] ppm Al Sl Sl ppm units	500 1600 500 1000 NA NL= 1000 NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22 8.1	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA NA NA NA	827 191 545 112 NA NA NA NA NA NA 8.4	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000-	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water, naturall deposits
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃) Magnesium Ph Potassium Sodium Total Organic Carbon	ppm µs/ ppm ppm FERS ppm ppb [ppm] ppm Al Sl Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9	VDARD 96 910 199 566 105 130 62 12.4 0.52 242 242 22 8.1 4.8	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA NA NA NA NA NA	827 191 545 112 NA NA NA NA NA NA 8.4 NA	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources Various natural and man-made
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃) Magnesium Ph Potassium Sodium Total Organic Carbon	ppm µs/ cm ppm ppm FERS ppm [ppm] ppm Al Sl Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9 91-95	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22 8.1 4.8 93 2.6	S NA 827 152-217 474-614 99-120 NA NA NA NA NA NA 7.5-8.7 NA NA	827 191 545 112 NA NA NA NA NA NA 8.4 NA NA 2.2	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892 54.6-61.5 NA	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501 57.0	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO3) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index)	ppm µs/ cm ppm ppm FERS ppm [ppm] ppm Al Sl Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9 91-95	JDARD 96 910 199 5666 105 130 62 12.4 0.52 242 22 8.1 4.8 93 2.6 VCM Range	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA NA NA 2.0-2.4	827 191 545 112 NA NA NA NA NA NA 8.4 NA NA 2.2	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892 54.6-61.5 NA //stem Average	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501 57.0	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources Various natural and man-made
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃) Magnesium Ph Potassium Sodium Total Organic Carbon (TOC)	ppm µs/ cm ppm ppm ERS ppm ppb [ppm] ppm Al Sl Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9 91-95	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22 8.1 4.8 93 2.6 VCM Range ND-3	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA 7.5-8.7 NA NA 2.0-2.4 WD Distri	827 191 545 NA NA NA NA NA 8.4 NA 2.2 bution Sy	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892 54.6-61.5 NA //stem Average 0.027	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501 57.0	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources Various natural and man-made sources Naturally occurring organic
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃) Magnesium Ph Potassium Sodium Total Organic Carbon (TOC) VCMWD Color VCMWD Color	ppm µs/ cm ppm ppm ERS ppm ppb [ppm] ppm Al Sl Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9 91-95	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22 8.1 4.8 93 2.6 VCM Range ND-3	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA NA NA 2.0-2.4	827 191 545 NA NA NA NA NA 8.4 NA 2.2 bution Sy	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892 54.6-61.5 NA //stem Average 0.027	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501 57.0	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources Naturally occurring organic materials Naturally occurring organic
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃) Magnesium Ph Potassium Sodium Total Organic Carbon (TOC)	ppm µs/ ppm ppm ERS ppm ppb [ppm] ppm Al Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9 91-95	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22 8.1 4.8 93 2.6 VCM Range ND-3 VCM Range ND	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA 7.5-8.7 NA NA 2.0-2.4 WD Distri	827 191 545 112 NA NA NA NA NA 8.4 NA 2.2 bution Sy	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892 54.6-61.5 NA /stem Average 0.027 /stem Average ND	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501 57.0	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Runoff/leaching from natural deposits; industrial waste Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources Naturally occurring organic materials
Chloride Specific Conductance Sulfate Total Dissolved Solids (TDS) OTHER PARAMET Alkalinity (as CaCO ₃) Boron Calcium Corrosivity (k) (as Aggressive Index) Corrosivity (g) (as Saturation Index) Hardness (CaCO ₃) Magnesium Ph Potassium Sodium Total Organic Carbon (TOC) VCMWD Color VCMWD Color	ppm µs/ ppm ppm ERS ppm ppb [ppm] ppm Al Sl ppm units ppm	500 1600 500 1000 NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	C STAN 92-100 903-917 195-203 560-572 103-107 130 61-62 12.3-12.4 0.46-0.57 242-243 22-23 8.1 4.6-4.9 91-95	JDARD 96 910 199 566 105 130 62 12.4 0.52 242 22 8.1 4.8 93 2.6 VCM Range ND-3 VCM Range ND	S NA 827 152-217 474-614 999-120 NA NA NA NA NA NA 7.5-8.7 NA NA 2.0-2.4 WD Distri	827 191 545 112 NA NA NA NA NA 8.4 NA 2.2 bution Sy	48-110 242.3 551.4 12.0-17.0 149-311 47-88 0.44-0.92 19.76- 60.00 NA NA 60.4-75.2 1.2-1.5 8.30-8.76 0.000- 33.892 54.6-61.5 NA /stem Average 0.027 /stem Average ND	430.8 14.8 240 66 0.65 23.3 NA NA 68.1 1.4 8.5 7.501 57.0	Runoff/leaching from natural deposits; seawater influence Substances that form ions in water; seawater influence Runoff/leaching from natural deposits; industrial waste Runoff/leaching from natural deposits; seawater influence Elemental balance in water; affected by temperature, other factors Elemental balance in water; affected by temperature, other factors Runoff/leaching from natural deposits; sum of polyvalent cations, generally magnesium and calcium present in the water Runoff/leaching from natural deposits Salt present in the water, naturally occurring Various natural and man-made sources Naturally occurring organic materials Naturally occurring organic

2024 WATER QUALITY DATA VALLEY CENTER MUNICIPAL WATER DISTRICT

Our water quality information for 2024 is listed in the tables on this page. Contained in the table are the test results for clarity and microbiological safety. Also included are results for 10 inorganic and secondary standards (aesthetic). Finally, the table includes results for 4 "other parameters" for which there are no current state or federal standards.

WHAT DO ALL THE ABBREVIATIONS MEAN?

A number of abbreviations are contained on the Water Quality tables, which are important to your understanding of the data, and those are:

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency.

Maximum Residual Disinfection Level (MRDL): The highest level of a disinfectant allowed in your drinking water. A certain amount of disinfectant has been shown to help control germs and microbes in the water

Maximum Residual Disinfection Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Primary Drinking Water Standard (PDWS): MCLs for contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect the taste, odor, or appearance of the drinking water. Contaminants with SDWS do not affect health at the MCL levels.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

2024 Abbreviations:

- A = Absence
- AI = Aggressive Index
- AL = Action Level: the concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow
- CFU/mL = Colony-forming units per milliliter
 - DBP = Disinfection Byproducts
 - DLR = Detection Limits for purposes of Reporting
 - HPC = Heterotrophic Plate Count
 - LRAA = Locational Running Annual Average
 - MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal
 - MRDL = Maximum Residual Disinfectant Level
- MRDLG = Maximum Residual Disinfectant Level Goal
 - MRL = Method Reporting Limit
 - N = Nitrogen
 - NA = Not Applicable
 - ND = Non-Detectable
 - NL = Notification Level
 - NTU = Nephelometric Turbidity Units is a measure of the suspended material in water
 - P = Presence
- pCi/L = Pico Curies per liter (a measure of radiation)
- PHG = Public Health Goal
- ppb = Parts per Billion ppm = Parts per Million
- ppt = Parts per Trillion
- 'SI = Saturation Index
- TOC = Total Organic Carbon
- TON = Threshold Odor Number
- TT = Treatment Technique: a required process intended to reduce the level of a contaminant in drinking water
- = Micromhos per centimeter

UCMR 5(j) (Unregulated Contaminant Monitoring Rule)							
PARAMETER	Units	MCL	[DLR] MRL				

ug/l

N/A

<u>2024 Footnotes:</u>

(a) Data shown are annual averages and ranges.

Lithium

- (b) As Primary Standards, the turbidity level of the filtered water shall be less than or equal to 0.3 NTU in 95% of the measurements taken each month and shall not exceed 1.0 NTU for more than one hour. Turbidity is a measure of the cloudiness of the water and is an indicator of treatment performance.
- (c) Total coliform MCLs: No more than 5.0% of the monthly samples may be total coliform positive. When collecting <40 samples, if two or more are total coliform positive, the MCL is violated. The MCL was not violated

E. coli MCLs: The occurrence of 2 consecutive total coliform positive samples, one of which contains fecal coliform/E. coli, constitutes an acute violation. Standards and results are based distribution system monthly sampling averages Compliance is based on distribution system sampling from all pressure zones. 416 samples were analyzed in 2024.

The MCL was not violated.

(d) Calculated from the average of quarterly samples. Compliance is based on a running annual average of 16 distribution system samples. VCMWD was in compliance with the Stage 2 Disinfection By-Products (D/DBP) Rule.

(e) Calculated from the average quarterly samples. Compliance is based on a running annual average of 16 distribution system samples.VCMWD was in compliance with the Stage 2. Disinfection By-Products (D/DBP) Rule.

Range

35-40

Test Results

Average

37

- Lead and copper are regulated in a Treatment Technique (f) under the Lead and Copper Rule. The lead and copper results for 2022 are from 30 water samples collected from the consumers' tap throughout the VCMWD distribution system. The federal action level, which triggers water systems into taking treatment steps if exceeded in more than 10% of the tap water samples, is 1.3 ppm for copper and 15 ppb for lead. There were zero samples that exceeded the action level.
- (g) Positive SI index = non-corrosive; tendency to precipitate and/or deposit scale on pipes

Negative SI index = corrosive; tendency to dissolve calcium carbonate.

- (h) Results are from VCMWD's laboratory's flavor-profile analysis that detects odor occurrences more accurately
- State MCL is 45 ppm as nitrate, which equals 10 ppm as (N). (i)
- In 2024, the USEPA required VCMWD to test for a specific list of (i) compounds. VCMWD is required to report the results on this CCR in order to comply with State of California reporting requirements

2024 WATER QUALITY REPORT

If appropriate, please post this report so that others may review its contents. Additional copies may be obtained by contacting the District at (760) 735-4500.

- (k) AI <10.0 = highly aggressive and very corrosive water Al >12.0 = non-aggressive water AI (10.0 - 11.9) = moderately non-aggressive water
- Metropolitan Water District was in compliance with all **(l)** provisions of the State's Fluoridation System Requirements. For additional information, visit the Health Department's fluoridation website: www.waterboards.ca.gov/drinking_water/certlic/drinking <u>water/Fluoridation.html</u>
- (m) VCMWD had no total coliform present samples in 2024. As a result, the MCL was not violated. Samples are collected every Monday, and the number collected per month is either 32 or 40.
- Constituent categories identified as VCMWD indicate that (n) water quality testing was conducted by VCMWD. Other constituent sampling was conducted by the District's wholesale suppliers, the MWD and the SDCWA.